Salvilanguidulines, Four New Diterpenoids Isolated From Salvia languidula With An Unusual Epoxy Spiro γ-Lactone

Jorge Cárdenas, Thelma Pavón, Baldomero Esquivel, Alfredo Toscano and Lydia Rodríguez-Hahn*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D. F., México.

Key Word: Salvia languidula; Labiatae; new rearranged clerodane derivatives; diterpenoids; salvilanguidulines.

Abstract:. Four new diterpenoids with a rearranged clerodane skeleton were isolated from Salvia languidula. All of them contain an epoxy spiro γ -lactone function and a C₁-C₁₃ bond. Their structures were established by spectroscopic methods and X-ray crystallographic analysis of one of them.

As a continuation of our systematic chemotaxonomic study of Mexican Salvias¹ we have analyzed several species classified² in section Angulatae (Salvia, Subgenus Calosphace). Diterpenoids with rearranged skeletons of clerodanic origin have been previously isolated from S. tiliaefolia ³ and S. rhyacophila ⁴.

In a previous communication⁵ we described the structure of languiduline 1, a diterpenoid isolated from S. languidula, (Salvia, Section Angulatae, subsection Glumacea) with a rearranged clerodane skeleton which we have named languidulane. In this communication we describe the isolation and structural elucidation of salvilanguidulines A-D.

Salvilanguiduline A, 2a m.p. 250-251 °C, $[\alpha]_D = -180^\circ$ (c. 0.2, CHCl₃), did not exhibit a molecular ion at m/z 416 for the expected molecular formula $C_{22}H_{24}O_8$, but in its mass spectrum showed a peak at m/z 386 (M⁺ - 30) and the base peak at m/z 43 indicating an acetate group. The IR spectrum (CHCl₃) showed an α , β -unsaturated γ -lactone (1774 cm⁻¹), absorptions due to acetate and ketone groups at 1724 cm⁻¹, and double bond (1674 cm⁻¹).

The ¹H NMR spectrum of 2a (Table 1) was very similar to the spectrum of the languidulane derivative isolated from *S. sousae* ⁶. The AB system ascribed to the 14,15 double bond was replaced by an AB system observed at δ 3.76 and 5.66 (J=2 Hz), which could be explained if the molecule possesses a 14,15 epoxy butanolide moiety with a fully substituted C-13, i.e. an epoxy spirolactone group.⁷A doublet at δ 3.28 (J=12 Hz) was ascribed to H-11 β . This assignment was confirmed by spin decoupling experiments which showed sharpening of this doublet on irradiation of the singlet signal due to Me-20. The long range coupling between Me-20 and H-11 β is only possible if they are antiperiplanar. The chemical shift of H-11 β suggested the

deshielding effect produced by the C-16 carbonyl group, which must be therefore β oriented. In order to corroborate the structure 2a proposed for salvilanguiduline A and the relative stereochemistry of the epoxy spiro lactone group, the X-ray diffraction analysis of a single crystal of 2a was performed.

The structure of salvilanguiduline A is shown in figure 2⁸. All ring junctions except that formed between rings A and D are trans. The cyclohexene ring A adopts a sofa conformation, while cyclohexane rings B and C possess a chair conformation. The γ -lactone ring D adopts an envelope conformation with C-5 as a flap. The epoxy spiro lactone at C-13 is essentially planar within experimental error. The equatorial methyl substituent at C-8 holds a syn-relationship with the acetoxy at C-7 and the methyl at C-9. The acetoxy group forms a dihedral angle of 74.8(4)° with the least-squares mean plane of cyclohexane ring B. The epoxy-spirolactone lies perpendicular to the cyclohexane ring C with the carbonyl oxygen on the β -side of the molecule and directed toward the center of this ring. A short contact between H-11 β and the C-16 carbonyl is a consequence of the orientation of the γ lactone ring which minimizes the interactions between the oxygen atoms of the epoxy molety and the keto group at C-12.

Salvilanguiduline B, 2b mp 289-291 °C, $[\alpha]_D = -50^\circ$ (c 0.12, MeOH), showed in the IR spectrum (nujol) a hydroxy group (3350 cm⁻¹), α , β unsaturated γ -lactone (1780 cm⁻¹), an acetate carbonyl (1735 cm⁻¹) and a ketone group (1712 cm⁻¹). The ¹H NMR spectrum (see Table 1) is similar to that described for 2a, but exhibited a doublet at δ 6.7 (J=2 Hz) which was assigned to H-3. The multiplicity and coupling constant of this signal indicated the presence of an α -oriented substituent at C-2, which must be a hydroxyl group whose geminal proton appeared as a multiplet at δ 4.55. The orientation of the hydroxy group was confirmed by the strong deshielding effect on H-14 ($\Delta\delta$ =0.67 ppm), which is only possible if the epoxy spirolactone holds a spacial relationship as show in Fig. 2.

Salvilanguiduline C, 2c mp 256-8 °C, showed in the IR spectrum (nujol) the presence of hydroxy group (3360 cm⁻¹), a γ -lactone (1785 cm⁻¹), an α , β -unsaturated γ -lactone (1775 cm⁻¹), an acetate carbonyl (1738 cm⁻¹) and a ketone group (1720 cm⁻¹). The ¹³C NMR spectrum¹⁰ led to a molecular formula C₂₂H₂₄O₉ and confirmed the presence of the functional groups indicated by the IR spectrum. The signal at δ 65.24 (s) was assigned to C-13 and the resonances at δ 105.27 and 68.16 to the ketalic C-15 and C-14 respectively. The ¹³C NMR spectrum was assigned by comparison with the reported spectral data of clerodanic diterpenoids¹¹. The ¹H NMR spectrum of 2c (see Table 1) was in agreement with the proposed structure. The AB system for the C-19 methylene did

583

not show the long range coupling for the pro-S proton, suggesting the presence of a C-6 β substituent¹². This was confirmed by a doublet at δ 3.91 (J=2 Hz) assigned to a geminal proton of a hydroxy group, coupled to the double doublet of H-7. The β orientation of the hydroxy group at C-6 causes a paramagnetic deshielding of H-10 (δ 3.2, d, J=12 Hz). The coupling constant of H-10 indicated its trans-axial relationship with H-1. The bond between C-1 and C-13 must be equatorial. Spin decoupling experiments showed that Me-20 group is only long range coupled to H-11 β .

The minor constituent was Salvilanguiduline D, 2d mp 283-285 °C, $[\alpha]_D = -50^\circ$ (c 0.12, MeOH). The ¹H NMR spectrum (see Table 1) was very similar to that discussed for 2a, but exhibited some changes. The Me-17 was a singlet at δ 1.15 and H-7 was observed as a triplet, therefore the hydroxy group is attached to C-8. The relative stereochemistry of this group was assigned as β as a consequence of the deshielding effect produced on H-11 β (δ 3.98, J=12 Hz) when compared with 2a ($\Delta\delta$ =0.7 ppm) which is due to a 1-3 diaxial relationship between them. This is also true for H-10 which appeared as a doublet at δ 3.25 (J=12 Hz).

Table 1 ¹H NMR Data for 2a 2b 2c and 2d

	2a*	2 b	2 c	2 d
H-2		4.55 m		
H-3	6.60 dd	6.70 d	6.60 dd	6.60 dd
	(7,3)	(2)	(7,3)	(7,3)
H-6a			3.91d	
			(2)	
H-7	5.35 td	5.37 td	5.12 dd	5.15 t
	(4,2)	(4,2)	(4,2)	(3)
H-10			3.20 d	3.25 d
			(12)	(12)
H-11β	3.28 d	3.20 d	3.30 d	3.98 d
	(12)	(12)	(12)	(12)
H-14	3.76 d	4.43 d	3.90 d	3.85 d
	(2)	(0.6)	(2)	(2)
H-15	5.66 d	5.72 d	5.75 d	5.70 d
	(2)	(0.6)	(2)	(2)
Me-17	0.90 d	0.92 d	0.88 đ	1.15 s
	(7)	(7)	(7)	
H-19	4.89 đ	4.85 d	4.80d	4.83 d
	(8)	(8)	(8)	(8)
H-19'	3.84 dd	3.95 dd	3.95 d	4.0 br d
	(8,2)	(8,2)	(8)	(8)
Me-20	1.00 s	1.00 s	0.99 s	1.05 s
OAc	2.14 s	2.16 s	2.15 s	2.14 s
OH		5.20	3.90	4.90

Run at 80 MHz using CDCl₃-DMSO- d_6 as solvent and TMS as internal standard. Coupling constants in Hz are in parenthesis. Chemical Shifts are in δ values. * Run as CDCl₃ solution.

Figure 2

Computer generated perspective drawing of Salvilanguiduline A

ACKNOWLEDGMENTS: We are very grateful to Dr. T. P. Ramamoorthy for botanical classification and to Messrs. R. Gaviño, L. Velasco and M. Torres for technical assistance

REFERENCES AND NOTES

- Rodríguez-Hahn, L.; Esquivel, B.; Sánchez, A. A.; Sánchez, C.; Cárdenas, J.; Ramamoorthy, T. P. Rev. Latinoamer. Quím. 1987, 18, 104-109.
- 2. Epling, C. Rep. Spec. Nov. Beih. 1939, 110, 1.
- Rodríguez-Hahn, L.; O'Reilly, R.; Esquivel, B.; Maldonado, E.; Ortega, A.; Cárdenas, J.; Toscano, R.-A.; Chan, T.-M. J. Org. Chem. 1990, 55, 3522-3525.
- 4. Fernández, M.-C.; Esquivel, B.; Cárdenas, J.; Sánchez, A. A.; Toscano, R. A.; Rodríguez-Hahn, L. *Tetrahedron*, in press.
- 5. Cárdenas, J.; Esquivel, B.; Toscano, R. A.; Rodríguez-Hahn, L. Heterocycles 1988, 27, 1809-1812.
- Esquivel, B.; Ochoa, J.; Cárdenas, J.; Ramamoorthy, T. P.; Rodríguez-Hahn, L. Phytochemistry 1988, 27, 2903-2905.
- 7. Zdero, C.; Bohlmann, F.; Mungai, G. M. Phytochemistry 1991, 30, 575-581.
- 8. Crystal Data: $C_{22}H_{24}O_8$, colourless, crystal dimensions 0.19x0.22x0.42 mm, monoclinic, a=6.589 (2), b=13.946 (4), c=10.614 (4) Å, β = 96.65(2)°, U=968.8(5) Å³, space group P2₁, Z=2, F₍₀₀₀₎ =440. Using ω :2 θ scans at variable scan rate 1271 unique reflections were collected in the range $3<2\theta<100^\circ$, 1238 having F₀>3 σ (F₀) were used in the structure analysis. Data were collected at 298 K on a Nicolet P3F diffractometer using Ni-filtered CuK_{α} radiation (λ =1.54178 Å). The cell parameters were determined by least-squares refinement of 25 accurately centered reflections in the range $10.6<2\theta<30.2^\circ$. The data were corrected by Lorentz and polarization effects but not for absorption. The structure was solved by direct methods using the program SHELXTL⁹ which revealed the position of all the non-hydrogen atoms. Hydrogen atoms were inserted at calculated positions using a rigid model with a common thermal parameter. The non-hydrogen atoms were refined with anisotropic thermal parameters and refinement converged with R=0.028, wR=0.034. The function minimized was $\Sigma w(|F_0|-|F_c|)^2$ where $w=(\sigma^2(F_0)+0.001F_0^2)^{-1}$. The final difference map showed no features greater than $\pm 0.15e$ Å⁻³.
- 9. Sheldrick, G. M. SHELXTL, revision 4.1. An Integral System for Solving Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany (1983).
- ¹³C NMR data for compound 2c (75 MHz, CDCl₃-DMSO-*d₆*),multiplicities obtained by the APT spectrum. (C-1)* 41.44 d;(C-2) 28.59 t; (C-3) 133.71 d; (C-4) 135.79 s; (C-5) 50.73 s; (C-6) 76.46 d; (C-7) 77.56 d; (C-8)* 39.21 d; (C-9) 43.04 s; (C-10)* 40.07 d; (C-11) 55.06 t; (C-12) 200.45 s; (C-13) 65.24 s; (C-14) 68.16 d; (C-15) 105.27 d; (C-16) 170.1 s; (C-17) 10.04 q; (C-18) 168.06 s; (C-19) 69.94 t; (C-20) 16.62 q; (AcO) 169.28, 21.12. [*Values could be exchangeable]
- 11. Esquivel, B.; Hernández, L.-M.; Cárdenas, J.; Ramamoorthy, T.-P.; Rodríguez-Hahn, L. *Phytochemistry* 1989, 28, 561-566.
- Herz, W.; Pilotti, A.-M.; Söderholm, A.-Ch.; Shuhama, I. K.; Vichnewsky, W. J. Org Chem. 1977, 42, 3913-3917.

(Received in USA 19 September 1991)